This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Share this

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – brightrecruits.com can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today

Blog

A little bang at SLAC

What’s the best way to determine the structure of a molecule that cannot be integrated within a periodic lattice?

Blow the heck out of it using x-ray pulses from the Linac Coherent Light Source (LCLS) — at least according to SLACs Philip Bucksbaum.

The LCLS will open next year at SLAC in California and will be much brighter than existing x-ray sources and will be capable of producing very short x-ray pulses.

It takes about 200 fs for the molecule to explode and the trick is to collect the diffraction data in the first 10-20 fs — when the molecule is still intact. By blowing up 100,000s of the same molecules, Bucksbaum claims that a 3d image of the molecule can be reconstructed. This technique has already been proven at an x-ray facility in Germany.

In his talk “Ultrafast X-ray Science at SLAC and LCLS” (U19 1), Bucksbaum described several other ways of harnessing the violent reaction between the X-ray pulses and sample.

For example, the pulses could be slammed into a solid such as iron. This would heat the sample and drive structural phase transitions that would propagate through the iron as “shock waves”. Real-time images of this process could be generated from the diffracted x-rays. This could give physicists valuable information about how lattice defects and other material properties affect the dynamics of phase transitions.

This entry was posted in APS March Meeting 2007. Bookmark the permalink.
View all posts by this author  | View this author's profile

Leave a comment

Your e-mail address will not be published. Required fields are marked *

Guidelines

  • Comments should be relevant to the article and not be used to promote your own work, products or services.
  • Please keep your comments brief (we recommend a maximum of 250 words).
  • We reserve the right to remove excessively long, inappropriate or offensive entries.

Show/hide formatting guidelines

Tag Description Example Output
<a> Hyperlink <a href="http://www.google.com">google</a> google
<abbr> Abbreviation <abbr title="World Health Organisation" >WHO</abbr> WHO
<acronym> Acronym <acronym title="as soon as possible">ASAP</acronym> ASAP
<b> Bold <b>Some text</b> Some text
<blockquote> Quoted from another source <blockquote cite="http://iop.org/">IOP</blockquote>
IOP
<cite> Cite <cite>Diagram 1</cite> Diagram 1
<del> Deleted text From this line<del datetime="2012-12-17"> this text was deleted</del> From this line this text was deleted
<em> Emphasized text In this line<em> this text was emphasised</em> In this line this text was emphasised
<i> Italic <i>Some text</i> Some text
<q> Quotation WWF goal is to build a future <q cite="http://www.worldwildlife.org/who/index.html">
where people live in harmony with nature and animals</q>
WWF goal is to build a future
where people live in harmony with nature and animals
<strike> Strike text <strike>Some text</strike> Some text
<strong> Stronger emphasis of text <strong>Some text</strong> Some text
WordPress Appliance - Powered by TurnKey Linux