This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Share this

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today


A new spin on silicon and graphene

At last year’s March Meeting in Denver, Ian Appelbaum gave a ten-minute talk about how he had injected spin-polarized electrons into a piece of silicon, transported them micrometres and then detected a spin-polarized current at the other end. It was just one of thousands of talks given that year.

But then Appelbaum published his results in Nature and this year he has been invited back to speak for 30 minutes — which he did today in a packed session that focused on spin injection in silicon.

The ultimate goal of Appelbaum’s research is to find practical ways to make “spintronic” devices, which in principle, could use the spin of the electron to process information much more efficient ways than coventional electronics.

To make a spintronic device, you need a material through which electrons can flow without losing their spin polarization — and it would be nice if that material was compatible with chip-making processes. Silicon fits the bill on both accounts, but is also has several drawbacks — it is difficult to inject spin-polarized electrons into the material; and once they are there it is difficult to measure their polarization.

Working at the University of Delaware Appelbaum’s team were the first to overcome these problems and you can find out how here.

I spoke with Appelbaum before his talk about how the fledgling field of silicon spin injection was shaping up. He described his breakthrough as a “clarification of the technologies that are needed”, and added that at least one more year of work by his team and others was needed before it would be possible to take a broader view of where the field was going.

Also speaking at the session was Berry Jonker of the Naval Research Lab. While Appelbaum detected spin polarization electrically, Jonker has worked out ways to detect it using light — something that is not usually possible thanks to silicon’s poor optical properties. Jonker finished his talk by declaring “There is a bright future for silicon spintronics”.

The future could also be bright for spintronics based on pieces of graphene — which are tiny flakes of carbon just one atom thick. It turns out that graphene shares many of silicon’s spin-friendly properties including weak spin-orbit and hyperfine interactions.

Speaking at a session on graphene, Bart van Wees of the University of Groningen, described a similar experiment to Appelbaum’s — but with graphene as the conductor. The experiment revealed that graphene is a good conductor of spin — but nowhere as good as silicon. The Groningen team found that spin polarization decays after the electrons travelled about 2 micrometres — a tiny distance compared to silicon. Indeed, Appelbaum told me that he hopes to transmit spins through a centimetre of silicon by the end of the year.

Van Wees described this shortcoming as a “mystery”.

Graphene has earned a reputation as a “wonder material” thanks to its outstanding electrical, thermal and mechanical properties. It’s comforting to know that graphene has been beaten by humble silicon when it comes to spintronics — at least for now!

This entry was posted in APS March Meeting 2008. Bookmark the permalink.
View all posts by this author  | View this author's profile

Comments are closed.


  • Comments should be relevant to the article and not be used to promote your own work, products or services.
  • Please keep your comments brief (we recommend a maximum of 250 words).
  • We reserve the right to remove excessively long, inappropriate or offensive entries.

Show/hide formatting guidelines

Tag Description Example Output
<a> Hyperlink <a href="">google</a> google
<abbr> Abbreviation <abbr title="World Health Organisation" >WHO</abbr> WHO
<acronym> Acronym <acronym title="as soon as possible">ASAP</acronym> ASAP
<b> Bold <b>Some text</b> Some text
<blockquote> Quoted from another source <blockquote cite="">IOP</blockquote>
<cite> Cite <cite>Diagram 1</cite> Diagram 1
<del> Deleted text From this line<del datetime="2012-12-17"> this text was deleted</del> From this line this text was deleted
<em> Emphasized text In this line<em> this text was emphasised</em> In this line this text was emphasised
<i> Italic <i>Some text</i> Some text
<q> Quotation WWF goal is to build a future <q cite="">
where people live in harmony with nature and animals</q>
WWF goal is to build a future
where people live in harmony with nature and animals
<strike> Strike text <strike>Some text</strike> Some text
<strong> Stronger emphasis of text <strong>Some text</strong> Some text