This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Share this

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today


The dusty cosmos


Astrophysicists have a better idea of how dust obscures the light from galaxies, according to a paper published in Astrophysical Journal Letters.

It is already well known that dust, which permeates all galaxies, attenuates the light reaching Earth from the cosmos. It absorbs light of most wavelengths and then re-emits it as a blanket of infrared radiation. Now, Simon Driver of St Andrews University in the UK and colleagues have produced the first model that accounts for this absorption.

One of the model’s implications — that dust absorbs just under half the radiation produced by stars — will not be a surprise to astronomers. They already know this, having compared the average magnitude of the infrared radiation in the sky with the magnitude of the radiation from pinpoint sources like stars and galaxies. But what might be of interest is that Driver and colleagues can show how the dust affects the light output of galaxies depending on their orientation.

I spoke with Alastair Edge of Durham University, who is familiar with Driver’s team’s work, and he was pleased that that the researchers have managed to model the dust successfully. He followed up our conversation with an email: “The authors have made an important link between the observed properties of the galaxies we see from the light coming directly from their stars to the amount of long wavelength radiation we see coming from the dust within the galaxies. Obtaining a match between the energy absorbed and that re-radiated allows us to understand the global properties of galaxies in a more holistic fashion.”

This entry was posted in General. Bookmark the permalink.
View all posts by this author  | View this author's profile

Comments are closed.


  • Comments should be relevant to the article and not be used to promote your own work, products or services.
  • Please keep your comments brief (we recommend a maximum of 250 words).
  • We reserve the right to remove excessively long, inappropriate or offensive entries.

Show/hide formatting guidelines

Tag Description Example Output
<a> Hyperlink <a href="">google</a> google
<abbr> Abbreviation <abbr title="World Health Organisation" >WHO</abbr> WHO
<acronym> Acronym <acronym title="as soon as possible">ASAP</acronym> ASAP
<b> Bold <b>Some text</b> Some text
<blockquote> Quoted from another source <blockquote cite="">IOP</blockquote>
<cite> Cite <cite>Diagram 1</cite> Diagram 1
<del> Deleted text From this line<del datetime="2012-12-17"> this text was deleted</del> From this line this text was deleted
<em> Emphasized text In this line<em> this text was emphasised</em> In this line this text was emphasised
<i> Italic <i>Some text</i> Some text
<q> Quotation WWF goal is to build a future <q cite="">
where people live in harmony with nature and animals</q>
WWF goal is to build a future
where people live in harmony with nature and animals
<strike> Strike text <strike>Some text</strike> Some text
<strong> Stronger emphasis of text <strong>Some text</strong> Some text