This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Share this

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today


Now you see it, now you don’t


By Michael Banks

Blink and it’s gone.

No, it’s not the latest in the search for the Higgs boson at the Large Hadron Collider near Geneva, but instead a slight difference in the mass between neutrinos and their antimatter counterparts, antineutrinos.

Neutrinos come in three “flavours” – electron, muon and tau – that change or “oscillate” from one to another as they travel though space.

It is generally thought that neutrinos and antineutrinos should have the same mass. Last year, however, results from the MINOS experiment at Fermilab, near Chicago, showed a 40% difference between muon neutrinos and muon antineutrinos (converting into tau neutrinos and tau antineutrinos, respectively) as they travelled from the accelerator to the MINOS detector (shown above) some 735 km away in the Soudan mine, Minnesota.

The results were presented with a “confidence level” of around 90–95%, which in statistical terms is approximately “two sigma” (usually a “discovery” requires five sigma).

Although the two sigma significance was small, the result was backed up three days later by a three sigma effect at another detector in the Soudan Mine – MiniBooNe. They saw a difference when muon neutrinos oscillate into electron neutrinos compared with the related process for muon antineutrinos.

Physicists noted that if the result turned out to be true it would not come as a surprise, but as an “overwhelming shock”.

But now it seems as though those fears have at least been partially allayed. After gathering twice as much data, researchers at MINOS announced yesterday at the Lepton Photon 2011 meeting in Mumbai, India, that they found the difference had dropped from 40% to 16%.

So it seems that there is still a disparity, but more data will be needed before we can be sure whether there is any mass difference between neutrinos and antineutrinos.

This entry was posted in General. Bookmark the permalink.
View all posts by this author  | View this author's profile

Comments are closed.


  • Comments should be relevant to the article and not be used to promote your own work, products or services.
  • Please keep your comments brief (we recommend a maximum of 250 words).
  • We reserve the right to remove excessively long, inappropriate or offensive entries.

Show/hide formatting guidelines

Tag Description Example Output
<a> Hyperlink <a href="">google</a> google
<abbr> Abbreviation <abbr title="World Health Organisation" >WHO</abbr> WHO
<acronym> Acronym <acronym title="as soon as possible">ASAP</acronym> ASAP
<b> Bold <b>Some text</b> Some text
<blockquote> Quoted from another source <blockquote cite="">IOP</blockquote>
<cite> Cite <cite>Diagram 1</cite> Diagram 1
<del> Deleted text From this line<del datetime="2012-12-17"> this text was deleted</del> From this line this text was deleted
<em> Emphasized text In this line<em> this text was emphasised</em> In this line this text was emphasised
<i> Italic <i>Some text</i> Some text
<q> Quotation WWF goal is to build a future <q cite="">
where people live in harmony with nature and animals</q>
WWF goal is to build a future
where people live in harmony with nature and animals
<strike> Strike text <strike>Some text</strike> Some text
<strong> Stronger emphasis of text <strong>Some text</strong> Some text