This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Share this

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today


On the trail of thorium

By Matthew Chalmers

Flowers presentation
Credit: BARC

If you’re wondering who that is second from right, holding a bunch of flowers while desperately trying to smile naturally in front of a camera, right in the hub of India’s nuclear power programme, it’s me. I was in the subcontinent after being sent by Physics World magazine to write about India’s audacious “three-stage” nuclear programme that seeks to exploit the country’s vast reserves of thorium as an alternative nuclear fuel to uranium. (You can read my final article “Enter the thorium tiger” in the October issue of the magazine, which can be downloaded free of charge via this link

The bouquet, along with a large leather wallet, was presented to me as a gift from directors of the Bhabha Atomic Research Centre (BARC) near Mumbai. My fellow flower holders – all from the British High Commission in Delhi – were there to build links between UK and Indian nuclear scientists, while I was present to unearth what I could about India’s nuclear plans. The flowers came from BARC’s extensive flowerbeds, which were laid at the request of the late physicist Homi Bhabha.

BARC, near Mumbai. Credit: BARC

There’s a certain romanticism to the way Bhabha, who established India’s nuclear programme 60 years ago, is revered among Indian nuclear physicists. He not only provided a vision of energy security that thrives 44 years after his untimely death in an air crash above the Alps, but used his connections to set in place an infrastructure that ensured his vision became reality.

Initially perplexed at why other countries weren’t exploiting thorium – a fuel that has many benefits over uranium – I asked one senior BARC physicist why the UK doesn’t have a nuclear roadmap like India’s. “Ah!,” he said, waving a finger at me, “it’s because you don’t have a Bhabha!”

Indian nuclear physicists take great pride in having developed most of their technology indigenously, owing to India’s being a nuclear-armed nation outside the non-proliferation treaty (NPT). But writing my article for Physics World . was not without its challenges.

Professional hierarchy is more apparent than in, say, a UK physics laboratory, and at times the atmosphere while I was at BARC was hugely formal, particularly when the new lab director was present. Plans to meet a few students and postdocs working at BARC were soon dashed, and recording equipment in India’s heavily guarded government labs is none too popular either.

Access to India’s nuclear programme would have been difficult were it not for the diplomatic context of my visit – and even then there were issues when it came to dealing with India’s top nuclear officials.

Changing geopolitical relations, particularly since 2008, when the US and India signed an agreement that led to India being brought into the nuclear fold, have led several countries to line up to co-operate with India on civil nuclear trade and technology. The UK is one of them.

During my trip the new UK prime minister was also visiting India, along with a trade delegation. Shortly afterwards, a bunch of joint research grants between physicists in the UK and India were funded – selected from a dozen fully costed proposals drawn up in just two days in the basement of a central London hotel back in March amid a flurry of sticky notes and chirpy facilitators from the Engineering and Physical Sciences Research Council (EPSRC). It was an impressive feat to witness, although not without a few bemused faces. Most of the nine Indian and 20 UK delegates had never met nor had much idea about each other’s research interests.

The Mumbai streets. Credit: M Chalmers

One thing that most surprised me in India is how few people on the street, so to speak, seem to know anything about India’s nuclear programme. Those who did know about thorium (whom I found while sipping cold beer in Chennai’s Madras Club, having visited India’s other big nuclear lab – the Indira Gandhi Centre for Atomic Research (IGCAR) on the other side of the country to Mumbai) all thought the programme was nowhere near on track, which is not what the physicists involved will tell you. Most people I got chatting to also assumed that I was interested in their views on weapons, rather than on civil nuclear power, with one or two asserting India’s right to develop them.

There is a degree of sensitivity to civil-nuclear collaboration between India and countries that are signatories of the NPT, which includes pretty much every other country. While having lunch at BARC with the lab’s new director, he made no mention of India’s weapons research as he listed the many basic science and other non-nuclear research taking place there.

Prototype Fast Breeder Reactor. Credit: IGCAR

Yet, gazing out of the window as we enjoyed a local interpretation of fish and chips, I could see – against a background of jungle and well-tended gardens leading out to the Arabian Sea – two large ageing nuclear reactors, one of which is to be shut at the end of this year as part of India’s commitment to separate its strategic and civilian nuclear programmes (a requirement of the US–India deal). I couldn’t help thinking how apt was the phrase “the elephant in the room”, as one UK nuclear physicist described the military dimension of nuclear technology to me.

But the thing that struck me overall while touring BARC and IGCAR was the sheer amount of effort involved to harness a new nuclear fuel cycle – an effort most deem too great at this time given the availability of and experience with uranium. I left IGCAR after being hurried past a blur of laboratories each piecing together a tiny aspect of Bhabha’s plan, from advanced welding joints to material irradiation tests.

In the back seat of the car bound for Chennai airport, I tore open some gift wrap to find that I was the proud new owner of a blue velvet box containing an ornament in the form of a large gold-coloured metal leaf. Lovely.

To read more, check out “Enter the thorium tiger” in the October issue of Physics World magazine, which can be downloaded free of charge via this link.

Matthew Chalmers is a freelance science writer in Bristol, UK

This entry was posted in General. Bookmark the permalink.
View all posts by this author  | View this author's profile

One comment to On the trail of thorium

  1. Most common man in India is aware about its nuclear power what going on in BARC well this is because lake of awareness, India’s media is busy in all political stuff which is not worthy at all. Infect people staying within BARC are not aware or they don’t want to inform what they are doing. According to me BARC should come out and help Indian people to improve their life instead of investing so much money and time in nuclear deals.


  • Comments should be relevant to the article and not be used to promote your own work, products or services.
  • Please keep your comments brief (we recommend a maximum of 250 words).
  • We reserve the right to remove excessively long, inappropriate or offensive entries.

Show/hide formatting guidelines

Tag Description Example Output
<a> Hyperlink <a href="">google</a> google
<abbr> Abbreviation <abbr title="World Health Organisation" >WHO</abbr> WHO
<acronym> Acronym <acronym title="as soon as possible">ASAP</acronym> ASAP
<b> Bold <b>Some text</b> Some text
<blockquote> Quoted from another source <blockquote cite="">IOP</blockquote>
<cite> Cite <cite>Diagram 1</cite> Diagram 1
<del> Deleted text From this line<del datetime="2012-12-17"> this text was deleted</del> From this line this text was deleted
<em> Emphasized text In this line<em> this text was emphasised</em> In this line this text was emphasised
<i> Italic <i>Some text</i> Some text
<q> Quotation WWF goal is to build a future <q cite="">
where people live in harmony with nature and animals</q>
WWF goal is to build a future
where people live in harmony with nature and animals
<strike> Strike text <strike>Some text</strike> Some text
<strong> Stronger emphasis of text <strong>Some text</strong> Some text