This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Share this

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today


Three for medical physics

I just came out of a medical physics press conference that presented three very different ways that physics can be put to use saving lives.

The first presentation was from David Nolte of Purdue University who has created a very simple but effective way of measuring motion inside cancer cells. The technique involves splitting a laser beam, reflecting one beam off a tumour and then recombining the two beams at a detector. The two beams interfere and motion within the cancer cells causes the interference to change.

The result is an image of the tumour covered in speckles that change rapidly as the organelles inside the cancer cells move. A moving cell is a healthy cell, so the technique can be used to study how some anti-cancer drugs slow down the movement within cells, ultimately killing them.

Andre Brown of the University of Pennsylvania described his work on fibrin, which are molecular chains that create web-like structures that aid in the clotting of blood. Blood clots cause heart attacks and strokes so it is very important to understand the mechanical properties of fibrin — particulalry how it stretches.

Brown used a technique developed a few years ago whereby the tip of an atomic force microscope (AFM) is used to pick up one end of a fibrin chain and tug on it. He discovered that fibrin was made of a chain of coiled proteins, with each coil unfolding 23nm when pulled hard enough by the AFM. The next step is to work out how this unfolding affects larger fibrin structures.

Finally, Michael Deem of Rice University explained how he has used statistical physics to develop strategies of multiple vaccination to keep the body’s immune system one step ahead of a rapidly mutating virus.

And a big thanks to the APS press office for a fantastic lunch today!

This entry was posted in APS March Meeting 2007. Bookmark the permalink.
View all posts by this author  | View this author's profile

Comments are closed.


  • Comments should be relevant to the article and not be used to promote your own work, products or services.
  • Please keep your comments brief (we recommend a maximum of 250 words).
  • We reserve the right to remove excessively long, inappropriate or offensive entries.

Show/hide formatting guidelines

Tag Description Example Output
<a> Hyperlink <a href="">google</a> google
<abbr> Abbreviation <abbr title="World Health Organisation" >WHO</abbr> WHO
<acronym> Acronym <acronym title="as soon as possible">ASAP</acronym> ASAP
<b> Bold <b>Some text</b> Some text
<blockquote> Quoted from another source <blockquote cite="">IOP</blockquote>
<cite> Cite <cite>Diagram 1</cite> Diagram 1
<del> Deleted text From this line<del datetime="2012-12-17"> this text was deleted</del> From this line this text was deleted
<em> Emphasized text In this line<em> this text was emphasised</em> In this line this text was emphasised
<i> Italic <i>Some text</i> Some text
<q> Quotation WWF goal is to build a future <q cite="">
where people live in harmony with nature and animals</q>
WWF goal is to build a future
where people live in harmony with nature and animals
<strike> Strike text <strike>Some text</strike> Some text
<strong> Stronger emphasis of text <strong>Some text</strong> Some text