This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Share this

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today


DAMA results go through the looking glass

By Jon Cartwright

The debate as to whether the DAMA/LIBRA team has detected dark matter, as it claimed in April, will no doubt persist until fresh data can say either way. But in the meantime, Robert Foot, a physicist from the University of Melbourne, suggests an alternative interpretation: “mirror matter”.

I’ll take a step back for a moment in case you aren’t familiar with the story. (Alternatively, you can see Physics World’s feature DAMA/LIBRA is an underground experiment based at the Gran Sasso laboratory in Italy. It looks for dark-matter particles known as WIMPs (weakly interacting massive particles) — a class favoured by theorists for the mysterious substance — by monitoring for flashes that occur when the particles collide with nuclei in 250 kg of sodium-iodide detectors. The idea is that the frequency of flashes should modulate over the year as the Earth changes its speed through our galaxy’s “halo” of dark matter: in June, when the Earth’s orbit takes us faster through the halo, one would expect to see more flashes; in December, when we are moving slower, one would expect to see fewer.

This seasonal modulation is just what the DAMA/LIBRA team presented in April. In fact, it’s just what the team presented in 2003, 2000 and 1998, too, but the most recent signal is at an unprecedented confidence level (8.2 standard deviations). The DAMA/LIBRA team insist that the modulation is evidence for dark-matter WIMPs. Others — particular those whose experiments who have not found any evidence in overlapping mass regions, such as CDMS in the US and XENON, also at Gran Sasso — disagree. (It should be noted that the DAMA/LIBRA team thinks that the different approach taken by these experiments is to blame for their lack of evidence.)

Foot’s interpretation, which builds on an analysis he performed on the 2003 DAMA data, offers a means to reconcile these viewpoints (Phys. Rev. D 78 043529. In theory, there could be a mirror particle for every particle in the Standard Model of particle physics. Unlike all known particles, which only obey rotational and translational symmetry, mirror particles would also obey reflectional symmetry. Moreover, mirror matter would only interact with normal matter weakly, making it an ideal candidate for dark matter.

So how can mirror matter explain the discrepancy in signals between DAMA/LIBRA and other dark-matter experiments? There are two main properties. First, the interaction rate of mirror matter would depend on the energy of the nuclear recoils produced by the collisions, which varies from experiment to experiment. DAMA detects a signal between 2–4 keV, whereas, for example, CDMS is only sensitive to recoils greater than 10 keV. Theory predicts that the interaction of mirror matter would go down as recoil energy goes up — so, says Foot, mirror matter would not be detected by experiments like CDMS.

Second is that the distribution of mirror matter in the galactic halo would be different to WIMP dark matter. Potentially, every mirror particle would be a dark-matter particle, and their combined distribution would veer towards lower velocities. With fewer high-velocity particles, says Foot, there would be fewer high-energy recoils.

Taking all this into account, Foot calculates that dark matter consisting of helium or hydrogen mirror particles with a small component of oxygen mirror particles would give a signal for DAMA/LIBRA while giving no signal for CDMS, XENON, etc.

I e-mailed Rita Bernabei, spokesperson for the DAMA/LIBRA experiment, to ask what she thought of the idea of mirror dark matter. “As stressed many times,” she replied, “many possible dark matter candidates can fit our model-independent observations; mirror dark matter is one of them.”

This entry was posted in General. Bookmark the permalink.
View all posts by this author  | View this author's profile


  1. On the topic of Dark Matter, NASA and the Hubble site have just released news of the detection of DM by galaxy collision – see the official announcement at

  2. My interest in this debate is enormous. I designed a darkfield-theory below quantum-level. Darkfield here stands for dark energy and dark matter. It is a much more detailed theory than is available at this moment. In my darkfield- theory dark matter is a torus-shaped particle. Accordingly the universe is a torus, instead of a Big Bang.
    This torus-shape (at small- and large scales) is not based on 1T-time (which is time in one direction in a Big Bang), but based on 3T-time. This is more in expection with quantum-physics, where time exists in two opposite directions. In my darkfield-theory the torus rotates, which is causing 2T-time and at the same time turns over its centrepoint, causing 3T-time. This delivers a sliced globe-shape-universe to live in, instead of a Big Bang. So, what is the crux for dark matter in this case of the DAMA/Libra debate: The case is, dark matter can also be monitored during detection by observing its rotational properties. This means it must be possible to discover an extra modulation in the signals.
    I hope my comment will be send forward to the team and the other commentators.
    Kind regards,
    ing. Dan Visser (PhD), The Netherlands, Almere, more information see my website:

  3. Ender

    “On the topic of Dark Matter, NASA and the Hubble site have just released news of the detection of DM by galaxy collision…”
    That was actually reported in this web site a couple of years ago. It looks quite convincing, doesn’t it?

Leave a comment

Your e-mail address will not be published. Required fields are marked *


  • Comments should be relevant to the article and not be used to promote your own work, products or services.
  • Please keep your comments brief (we recommend a maximum of 250 words).
  • We reserve the right to remove excessively long, inappropriate or offensive entries.

Show/hide formatting guidelines

Tag Description Example Output
<a> Hyperlink <a href="">google</a> google
<abbr> Abbreviation <abbr title="World Health Organisation" >WHO</abbr> WHO
<acronym> Acronym <acronym title="as soon as possible">ASAP</acronym> ASAP
<b> Bold <b>Some text</b> Some text
<blockquote> Quoted from another source <blockquote cite="">IOP</blockquote>
<cite> Cite <cite>Diagram 1</cite> Diagram 1
<del> Deleted text From this line<del datetime="2012-12-17"> this text was deleted</del> From this line this text was deleted
<em> Emphasized text In this line<em> this text was emphasised</em> In this line this text was emphasised
<i> Italic <i>Some text</i> Some text
<q> Quotation WWF goal is to build a future <q cite="">
where people live in harmony with nature and animals</q>
WWF goal is to build a future
where people live in harmony with nature and animals
<strike> Strike text <strike>Some text</strike> Some text
<strong> Stronger emphasis of text <strong>Some text</strong> Some text
WordPress Appliance - Powered by TurnKey Linux