Posts by: Tushna Commissariat

Rosetta and bedbugs, LIGO and dark matter, arXiving science and more…

 

By Tushna Commissariat

Space missions and insects are not the most usual of bedfellows. But in a wonderful example of how space technology can be translated into practical devices for use here on Earth,  a UK company has repurposed and adapted an analyser used onboard the Rosetta mission – that in 2014 landed a probe on a comet for the first time – to sniff out bedbugs. The pest-control company, Insect Research Systems, has created a 3D-printed detector that picks up bodily gas emissions from bedbugs – such a device could be of particular use in the hotel industry, for example, where many rooms need to be quickly scanned. The device is based on the Ptolemy analyser on the Philae lander, which was designed to use mass spectroscopy to study the comet’s surface.

“Thanks to the latest 3D-printing capabilities, excellent design input and technical support available at the Campus Technology Hub, we have been able to optimize the design of our prototype and now have a product that we can demonstrate to future investors,” says Taff Morgan, Insect Research Systems chief technical officer, who was one of the main scientists on Ptolemy. In the TEDx video above, he talks about the many technological spin-offs that came from Ptolemy – skip ahead to 13:45 if you only want to hear about the bedbugs, though.

(more…)

Posted in The Red Folder | Tagged , , , | 1 Comment | Permalink
View all posts by this author  | View this author's profile

Spiralling temperatures, physics legacies, the science of mac and cheese

Spiralling global temperatures

Ring of fire: spiralling global temperatures. Created by climate scientist Ed Hawkins of the University of Reading.

 

By Tushna Commissariat

As we face up to the realities of global warming and see the effects of climate change become apparent, it’s more important than ever that people the world over truly grasp its impact. With this in mind, University of Reading climate scientist Ed Hawkins has created the above animated spiral, which shows how the global temperature has changed over the past 166 years. Using data from the Met Office’s Hadley Centre observations datasets, Hawkins’ animation presents data in a a clear and artistic way. “The pace of change is immediately obvious, especially over the past few decades. The relationship between current global temperatures and the internationally discussed target limits are also clear without much complex interpretation needed,” says Hawkins, who is based at the university’s National Centre for Atmospheric Science. Take a look at his webpage to learn more about the project and for a list of specific weather events that are noticeable in the data.

(more…)

Posted in The Red Folder | Tagged , , , , , | Leave a comment | Permalink
View all posts by this author  | View this author's profile

Looking toward the quantum-technology landscape of the future

Looking to the future: Sir peter Knight opening the Quantum technology for the 21st Century conference at the RSC (Courtesy: Tushna Commissariat)

Futuristic views: Peter Knight opening the conference at the Royal Society in London. (Courtesy: Tushna Commissariat)

By Tushna Commissariat

Not a week goes by here at Physics World that we don’t cover some advance in quantum mechanics – be it another step towards quantum computing or error correction, or a new type of quantum sensor, or another basic principle being verified and tested at new scales. While each advance may not always be a breakthrough, it is fair to say that the field has grown by leaps and bound in the last 20 years or so. Indeed, it has seen at least two “revolutions” since it first began and is now poised on the brink of a third, as scientific groups and companies around  the world race to build the first quantum computer.

With this in mind, some of the stalwarts of the field – including Peter Knight, Ian Walmsley, Gerard Milburn, Stephen Till and Jonathan Pritchard – organized a two-day discussion meeting at the Royal Society in London, titled “Quantum technology for the 21st century“, which I decided to attend. The meeting’s main aim was to bring together academic and industry leaders “in quantum physics and engineering to identify the next generation of quantum technologies for translational development”. As Knight said during his opening speech, the time has come to “balance the massive leaps that the science has made with actual practical technology”.

(more…)

Posted in General | Tagged , , , | Leave a comment | Permalink
View all posts by this author  | View this author's profile

Climate change and chaos, the many faces of physics, spider-silk superlenses and more

 

By Tushna Commissariat

In case you have ever wondered why so many theoretical physicists study climate change, physicist Tim Palmer from the University of Oxford in the UK has a simple answer: “because climate change is a problem in theoretical physics”. Indeed, Palmer, who won the Institute of Physics’ 2014 Dirac medal, studies the predictability and dynamics of weather and climate, in the hopes of developing accurate predictions of long-term climate change. The answer, according to Palmer, lies at the intersection between chaos theory and inexact computing – which requires us to stop thinking of computers as deterministic calculating machines and to instead “embrace inexactness” in computing. Palmer talked about all this and more in the latest public lecture from the Perimeter Institute in Canada – you can watch his full talk above.

When someone says the word “physicist”, what image or persona comes to mind? That is the question the Institute of Physics (which publishes Physics World) was hoping to answer with its recent member survey based on diversity, titled “What Does a Physicist Look Like?” The Institute’s main aim with this diversity survey, which about 13% of its members responded to, was “to understand the profile of our members and gain some insights into who they are – diverse people with different ages, ethnicities, beliefs and much more”. You can read its entire results here.

(more…)

Posted in The Red Folder | Tagged , , , , | 5 Comments | Permalink
View all posts by this author  | View this author's profile

The toll of a year in space, running a marathon on the ISS, skip-diving at CERN and more

By Tushna Commissariat and Michael Banks

“A year here is a really really long time,” says astronaut Scott Kelly in an interview (watch the video above) that he did on board the International Space Station (ISS) just a month before he returned to Earth in March this year. The retired astronaut is talking about the very real effects of spending a long period in space, specifically citing both the physical effects as well as the “psychological stress” involved. “During my time in orbit, I lost bone mass, my muscles atrophied and my blood redistributed itself in my body, which strained my heart. Every day I was exposed to 10 times the radiation of a person on Earth, which will increase my risk of developing a fatal cancer for the rest of my life. Not to mention the psychological stress, which is harder to quantify and is perhaps as damaging,” he says.

The comments were part of the announcement of his upcoming memoir, Endurance: My Year in Space and Our Journey to Mars, which will be published later this year. Despite the damming tone, Kelly is still a staunch supporter of manned spaceflight and missions such as those to Mars, he just has a much clearer view on the realities involved. Read more about his announcement over at the GeekWire website.

(more…)

Posted in The Red Folder | Tagged , , , , , | Leave a comment | Permalink
View all posts by this author  | View this author's profile

3D-printed dog’s nose sniffs out why canines are excellent chemical analysers

 

By Tushna Commissariat

After a long trip in the US – attending the APS March meeting and visiting both the Maryland campus of the National Institute for Standards and Technology, as well as the Brookhaven National Laboratory in New York – I finally made my way back home yesterday. As I flew out of New York, I was reminded of my visit to NIST’s Surface and Trace Chemical Analysis Group, where researchers develop a variety of ways to detect contraband substances at airports and other public locations. While the team looks into a variety of ways to detect trace residues of banned substances such as drugs or explosives that may be found on people or objects – from mass spectroscopy to thermal desorption to vapour-sampling – my favourite was their canine research that led them to create a 3D-printed dog’s nose!

(more…)

Posted in General | Tagged , , , , , | 1 Comment | Permalink
View all posts by this author  | View this author's profile

The unexpected benefit of a malfunctioning magnet at RHIC

Inside the RHIC tunnel

Beam me down: in the RHIC tunnel. (Courtesy: Tushna Commissariat)

By Tushna Commissariat in New York City, US

I’m not one to rejoice in someone else’s misfortune, but I must admit that I couldn’t help but be a bit pleased when I heard that the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL) had a malfunction last Friday. You see, I happened to be visiting the collider and its detectors yesterday, and if a malfunctioning superconducting magnet had not shorted a diode last Friday, I would not have had the chance to go down into the collider tunnel, which was a great experience.

RHIC – which, along with the Large Hadron Collider at CERN, is the only other detector capable of colliding heavy ions and is, in fact, the only spin-polarized collider in the world – has been running since the year 2000, and accelerator director Wolfram Fischer tells me that I am rather “lucky” as “failed magnets are very rare”. Indeed, he said that after initial teething problems when RHIC was switched on, this was the first such magnet failure that has occurred in the past 15 years. But fear not, the RHIC maintenance crew is already hard at work – the diode will soon be replaced and the collider should be up and running again in the next few days.

(more…)

Posted in General | Tagged , , , , | 1 Comment | Permalink
View all posts by this author  | View this author's profile

Setting the standards for physics

The NIST campus in Gaithersburg

Keepers of time: at the NIST campus in Gaithersburg. (Courtesy: Tushna Commissariat)

By Tushna Commissariat in New York City, US

As most of our regular blog readers will know, last week Physics World‘s Matin Durrani and I were in Baltimore attending the APS March meeting. While we spent most of the week at the conference centre, last Friday we visited the National Institute of Standards and Technology’s (NIST) Gaithersburg campus, as well as the Joint Quantum Institute (JQI), which is based at the University of Maryland. It was a jam-packed, exciting day that we spent zipping around to and from more than 10 different labs and departments, meeting people who use physics to do everything from improve the safety of body armour to redefining the kilogram.

As we saw so many interesting projects, covering them all would make for a rather long read. Instead, join me for a quick visual tour of NIST below (I will cover our JQI visit in a separate blog) to get a small taste of the physics and people involved.

(more…)

Posted in General | Tagged , , , | 2 Comments | Permalink
View all posts by this author  | View this author's profile

Getting a fix on quantum computations

Nine superconducting qubit

Bit of choice: A photograph of the nine superconducting qubit device developed by the Martinis group at the University of California, Santa Barbara, where, for the first time, the qubits are able to detect and effectively protect each other from bit errors. (Courtesy: Julian Kelly/Martinis group)

By Tushna Commissariat in New York City, US

Although the APS March meeting finished last Friday and I am now in New York visiting a few more labs and physicists in the city (more on that later), I am still playing catch-up, thanks to the vast number of interesting talks at the conference. One of the most interesting sessions of last week, and a pretty popular one at that, was based on “20 years of quantum error correction” and I went along to the opening talk by physicist John Preskill of the California Institute of Technology. I had the chance to catch up with Preskill after his talk and we discussed just why he thinks that we are not too far away from a true quantum revolution.

Just in case you haven’t come across the subject already, quantum error correction is the science of protecting quantum information (or qubits) from errors that would occur as the information is influenced by the environment and other sorts of quantum noise, causing it to “decohere” and lose its quantum state. Although it may seem premature that scientists have been working on this problem for nearly two decades when an actual quantum computer has yet to be built, we know that we must account for such errors if our quantum computers are ever to succeed. It will be essential if we want to achieve fault-tolerant quantum computation that can deal with all sorts of noise within the system, as well as faults in the hardware (such as a faulty gate) or even a measurement.

Over the past 20 years, theoretical work in the field has made scientists confident that quantum computing of the future will be scalable. Preskill says that “it’s exciting because the experimentalists are taking it quite seriously now”, while initially the interest was mainly theoretical. Previously, scientists would artificially create the noise in the quantum systems that they would correct but now actual quantum computations can be fixed. Indeed, Preskill says that one of the key things that has really moved quantum error correction along in the past few years is the concentrated improvement of the hardware used, i.e. better gates with multiple qubits being processed simultaneously.

(more…)

Posted in APS March Meeting 2016 | Tagged , , , | 3 Comments | Permalink
View all posts by this author  | View this author's profile

LEGO bricks, bony foams and Islamic art aid metamaterial advances

Photograph of Paolo Celli with his LEGO brick platform

Play time: Paolo Celli with his LEGO platform. (Courtesy: Tushna Commissariat)

By Tushna Commissariat in Baltimore, Maryland, US

Metamaterials are always a hot topic at the APS March meetings, and this afternoon we were treated to an array of the latest developments in the field. Just in case you have not come across the term before, a metamaterial is an artificially crafted material that aims to achieve the naturally unattainable. These materials are engineered to have special physical properties – some metamaterials act as optical or acoustic cloaks, while some can harvest energy or be used to dissipate it in some form.

Paolo Celli of the University of Minnesota in the US loved playing with LEGO bricks as a child. Now, the physicist still gets to play with LEGO, as his team has been using the bricks both to understand how metamaterials interact with waves and also as an inexpensive and accessible outreach medium. While the researchers initially looked at 3D printing to develop their platform material, they soon found that LEGO bricks attached to a baseplate made for an agile, versatile, low-cost platform that was not highly damped and could be easily reconfigured.

Celli and colleagues have already used the LEGO to experimentally demonstrate phononic band gaps and the associated energy-trapping mechanisms. They are currently working on demonstrating the control of wavelengths that are larger than the width of waveguides realized in the brick pattern, with potential applications in subwavelength wave focusing and imaging. We will be talking to Celli tomorrow, so watch out for more on LEGO metamaterials soon.

(more…)

Posted in APS March Meeting 2016 | Tagged , , | 1 Comment | Permalink
View all posts by this author  | View this author's profile