This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Share this

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today


‘Subtle defect’ worry at LHC

By Hamish Johnston

Something to worry about: brown bars are the copper stabilizers

A few weeks ago Matthew Chalmers reported that Higgs-hunting particle physicists will have to wait until 2013 before the LHC reaches its maximum energy.

The nuts and bolts of why are described nicely in a new paper called Superconductivity: its role, its success and its setbacks in the Large Hadron Collider of CERN, which has just been published in Superconductor Science and Technology.

The paper — by CERN’s Lucio Rossi — includes a section called “Incident in sector 3-4” that describes in great detail the accident that took down the LHC in 2008. You can read exactly how an electrical connector failed — vaporizing a length of superconducting cable, heating the surrounding helium, which surged along the beam line wreaking havoc.

Could a similar disaster strike again? Rossi appears to say yes — “…a more subtle defect, related to a lack of continuity in the copper stabilizer, is now evident and is worrying since it is diffused around the machine”.

These copper stabilizers are part of an electrical circuit used to divert current from the superconducting cable if a fault occurs. Rossi is worried because at some connectors there is insufficient electrical contact between the cable and stabilizers — and between adjacent stabilizers. In the diagram above this trouble spot is labelled “Gaps with lack of Sn-Ag filler”.

If such a splice between cables fails — as one did in 2008 — the adjacent cable is heated and is no longer superconducting. If the cable is bare and there is a gap between stabilizers, current is forced to flow through the cable causing it to melt in a matter of seconds.

While the LHC has implemented a new system for detecting bad splices before they can cause damage, Rossi says that the gaps at the connectors could themselves be a problem. Warm helium from a minor problem elsewhere could, for example, heat the connector — triggering a similar disaster as occurred in 2008.

LHC scientists have devised a way of finding such gaps — but it works best when the LHC is warm. Half the accelerator was warmed up in 2008 for repairs and gaps were found and fixed. Most of the other half, however, was kept at 80 K and could not be thoroughly tested and repaired. As a result, Rossi believes that several gap defects could remain in the accelerator.

The upshot is that CERN will run the LHC in 2010 at the lower energy of 7 TeV, hoping that the connectors will hold. Then the accelerator will be shut down in 2012 for a year so all 10,000 connectors can be replaced. Finally, in 2013 protons in the LHC will collide at 14 TeV.

But the paper is not all bad news — it also describes how the LHC is at the pinnacle of superconducting technology. Here are a few superlatives:

– The accelerator has nearly 10,000 superconducting magnets

– The magnets are cooled by 130 tonnes of helium held at 1.9 and 4.2 K

– The accelerator contains about 15,000 MJ of magnetic energy

– 1200 tonnes of Nb-Ti superconducting cables were used to wind the magnets

– There is a 0.01% variation in field quality among the 1232 main dipole magnets

This entry was posted in General. Bookmark the permalink.
View all posts by this author  | View this author's profile

One comment to ‘Subtle defect’ worry at LHC

  1. This sounds like a massive job, lets hope the connectors hold until 2012! Although it sounds like a long time to close for, I would have thought if enough people were working on changing the connectors at the same time, it wouldnt take an entire year?


  • Comments should be relevant to the article and not be used to promote your own work, products or services.
  • Please keep your comments brief (we recommend a maximum of 250 words).
  • We reserve the right to remove excessively long, inappropriate or offensive entries.

Show/hide formatting guidelines

Tag Description Example Output
<a> Hyperlink <a href="">google</a> google
<abbr> Abbreviation <abbr title="World Health Organisation" >WHO</abbr> WHO
<acronym> Acronym <acronym title="as soon as possible">ASAP</acronym> ASAP
<b> Bold <b>Some text</b> Some text
<blockquote> Quoted from another source <blockquote cite="">IOP</blockquote>
<cite> Cite <cite>Diagram 1</cite> Diagram 1
<del> Deleted text From this line<del datetime="2012-12-17"> this text was deleted</del> From this line this text was deleted
<em> Emphasized text In this line<em> this text was emphasised</em> In this line this text was emphasised
<i> Italic <i>Some text</i> Some text
<q> Quotation WWF goal is to build a future <q cite="">
where people live in harmony with nature and animals</q>
WWF goal is to build a future
where people live in harmony with nature and animals
<strike> Strike text <strike>Some text</strike> Some text
<strong> Stronger emphasis of text <strong>Some text</strong> Some text