This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Share this

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today


Alpha might vary across the universe

Spectrum of a quasar

A look into the anatomy of a quasar’s spectrum (Credit: Michael Murphy, Swinburne University of Technology/NASA/ESA)

By Tushna Commissariat

A paper published in Physical Review Letters this week talks about how one of the fundamental constants of our universe – the fine-structure constant (α) – may vary across the universe. If you feel like you have heard something about this before, that is because the researchers have been looking into this particular phenomenon for almost a decade now.

They published a pre-print of this work on the arXiv server in August 2010, but the paper was only published in PRL yesterday, the delay perhaps reflecting how profound the finding could be.

The constant α is a combination of another three constants – the speed of light “c”, the charge of an electron “e” and Plank’s constant “h” – and is given by α = e2/hc.

John Webb and colleagues first looked at the light coming from very distant quasars in 1999, using the Keck Observatory in Hawaii and more recently the Very Large Telescope in Chile, to see if α really was a fundamental constant or if it varied with time or space. They use distant quasars simply as light sources that span across billions of light years. The spectrum of the quasar light carries an imprint of atoms in gas clouds that the light traverses through on its way to Earth. These spectral “fingerprint” absorption lines (known as “metal absorption lines”) are then compared with the same fingerprints found in laboratories here on Earth to infer any changes to α.

What the researchers found, after looking at the light from almost 300 quasars (as of 2010) was that α was decreasing in one direction as seen from the Earth and increasing in the exactly opposite direction. This asymmetry in the two hemispheres has been dubbed the “Australian dipole” by the researchers and has a statistical significance of about 4 σ. While some scientists were sceptical of the finding in 2010, others called it “the news of the year in physics”. If the discovery is confirmed, it would have profound implications on our understanding of the universe and on many of our current cosmological theories.

If you would like to refresh your memory about the paper or find out what it’s all about, take a look at the news story written by Hamish Johnston last year here, or take a look at the feature article written for Physics World by lead author of the paper, John Webb, here.

This entry was posted in General and tagged , , , . Bookmark the permalink.
View all posts by this author  | View this author's profile

Comments are closed.


  • Comments should be relevant to the article and not be used to promote your own work, products or services.
  • Please keep your comments brief (we recommend a maximum of 250 words).
  • We reserve the right to remove excessively long, inappropriate or offensive entries.

Show/hide formatting guidelines

Tag Description Example Output
<a> Hyperlink <a href="">google</a> google
<abbr> Abbreviation <abbr title="World Health Organisation" >WHO</abbr> WHO
<acronym> Acronym <acronym title="as soon as possible">ASAP</acronym> ASAP
<b> Bold <b>Some text</b> Some text
<blockquote> Quoted from another source <blockquote cite="">IOP</blockquote>
<cite> Cite <cite>Diagram 1</cite> Diagram 1
<del> Deleted text From this line<del datetime="2012-12-17"> this text was deleted</del> From this line this text was deleted
<em> Emphasized text In this line<em> this text was emphasised</em> In this line this text was emphasised
<i> Italic <i>Some text</i> Some text
<q> Quotation WWF goal is to build a future <q cite="">
where people live in harmony with nature and animals</q>
WWF goal is to build a future
where people live in harmony with nature and animals
<strike> Strike text <strike>Some text</strike> Some text
<strong> Stronger emphasis of text <strong>Some text</strong> Some text