This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – brightrecruits.com can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today

Tag archives: earth sciences

Space weather: it’s all about impact

By Susan Curtis

Extreme ultraviolet image of a tangle of arched magnetic filed lines in the Sun's corona, taken in January 2016 by NASA's Solar Dynamics Observatory.

Dangerous affair – an extreme ultraviolet image of a tangle of arched magnetic filed lines in the Sun’s corona, taken in January 2016 by NASA’s Solar Dynamics Observatory. (Courtesy: Solar Dynamics Observatory, NASA)

We all love a good disaster movie, but when it comes to real life it’s all too easy to downplay a dangerous but distant threat. Many people choose to live on active volcanoes, the citizens of San Francisco know that “the Big One” could strike at any moment, and yet they believe that the benefits of living in those locations outweigh the risk of a severe event happening in their lifetime.

The same dilemma faces the community of scientists, engineers and policy-makers who are working to understand the impacts of space weather – changes in the Earth’s environment that are largely are driven by physical processes originating from the Sun. Space weather has the potential to disrupt or even damage critical infrastructures on Earth, such as the power grids, aviation routes and communication systems that modern societies depend on, but the last notable event dates back to 2003.

That’s why Mike Hapgood, who heads up the Space Weather Group at RAL Space, part of the UK’s Rutherford Appleton Laboratory, has written a new, free-to-read Physics World Discovery ebook called Space Weather. “I thought it would be a great opportunity to highlight what space weather is really about, and to show how we are linking our scientific knowledge to a better understanding of the impacts on society,” he comments.

(more…)

Posted in Physics World Discovery | Tagged , , , , , | Comments Off on Space weather: it’s all about impact | Permalink
View all posts by this author  | View this author's profile

Cracking the earthquake lights mystery and out-of-this-world technology

Old photo of earthquake ights taken in Romania

A photograph of streams of lights taken in 1977 near Brasov, Romania, about 100 km from the epicentre of a M 7.2 earthquake. (Courtesy: Seismological Society of America)

By Tushna Commissariat

In case you missed it, I was at the APS March meeting in Denver, Colorado last week and I was blogging about a whole host of interesting talks and sessions that I attended. Although I am back in Bristol now, there were one or two other talks that I thought covered some very interesting physics, so here’s a catch-up.

Slip slidin’ away
Seasoned physicsworld.com readers will remember that earlier this year, we featured a rather intriguing story on the phenomenon of earthquake lights – the mysterious and unpredictable glowing lights that seem to appear before some earthquakes. First documented in the 1600s and seen as recently as the Fukushima earthquake of 2011, the “unidentified glowing objects” add to the long list of possible earthquake precursors, and so are of interest. The study that we wrote about in January looked at 65 well-documented events of such lights and concluded that they may occur thanks to a particular type of geological fault – a subvertical fault – causing the earthquake.

(more…)

Posted in APS March Meeting 2014 | Tagged , , , , | 3 Comments | Permalink
View all posts by this author  | View this author's profile

Cruise-ship physics, the many ways to tie a tie, shaken-up carbon dating and more

By Tushna Commissariat

If you like piña coladas and quantum mechanics, then we hope you are currently on the two-week “Bright Horizons 19” Southeast Asia cruise, as on board is physicist and writer Sean Carroll. He will be giving multiple lectures over the next 15 days on everything from the Higgs boson to dark matter and other fundamentals of quantum mechanics. Also floating along with Carroll are other lecturers who will cover topics from natural history to genetics to military strategy. If, like us, you are stuck at home, you can take a look at Carroll’s slides on his blog, maybe have a cocktail while you are at it.

(more…)

Posted in The Red Folder | Tagged , , , , , | Comments Off on Cruise-ship physics, the many ways to tie a tie, shaken-up carbon dating and more | Permalink
View all posts by this author  | View this author's profile

Why do beer bottles foam when struck on top?

A foamy mess in the making (Courtesy: Javier Rodríguez-Rodríguez)

A foamy mess in the making. (Courtesy: Javier Rodríguez-Rodríguez)

By Hamish Johnston

We’ve all had a friend who does it – you’re deep in conversation at a party, beer bottle in hand, when someone sneaks up and taps the top of your bottle with theirs, causing a foamy mess to erupt from your bottle. And to add insult to injury, their bottle doesn’t foam.

Now, physicists in Spain and France have studied this curious effect and gained a better understanding of how it occurs. While their work won’t prevent wet shoes and slippery floors at university social gatherings, the researchers believe their work could provide insights into geological features such as oil reservoirs, mud volcanoes and “exploding lakes”.

(more…)

Posted in General | Tagged , , , , , | 1 Comment | Permalink
View all posts by this author  | View this author's profile

How to survive earthquakes and noisy neighbours

By Jon Cartwright

The past few years has seen a steady stream of proposals for cloaking objects, whether it’s from light, heat, water waves, magnetic fields or even time. Now, physicist Sang-Hoon Kim at the Mokpo National Maritime University in Korea is adding to this list, first off with a cloak that could protect buildings from earthquakes.

An earthquake cloak has been proposed before using – as is common in invisibility cloaks – elaborately structured “metamaterials” to guide seismic waves safely around a building. However, Kim, together with Mukunda Das at the Australian National University in Canberra, has put forward a different approach: a metamaterial barrier that dissipates seismic energy as sound and heat. The idea is that many buildings could hide in the “shadow zone” of the barrier. This could be a boon for city planners, who would not have to make cloaks for individual buildings. Kim and Das’s paper has been accepted for publication in Modern Physics Letters B and is available as a preprint entitled “Artificial seismic shadow zone by acoustic metamaterials“.

(more…)

Posted in General | Tagged , | 1 Comment | Permalink
View all posts by this author  | View this author's profile

Earth sciences: unlocking the secrets of a dynamic planet

By Joe McEntee, group editor at IOP Publishing

The latest video report from our globe-trotting multimedia team offers an “up close and personal” take from the bleeding edge of the Earth sciences, as told to us by faculty and graduate students in the geosciences department at the University of Texas at Dallas (UT Dallas).

Filmed in the spring as an add-on to our coverage of the American Physical Society March Meeting in Dallas, the interviews cover a lot of ground – to be expected for a discipline that aims to unlock the secrets of the solar system’s most active planet.

Carlos Aiken and colleagues, for example, are using an approach called cybermapping (which integrates laser scanning, digital photography and satellite positioning, among other sensors) to build 3D photorealistic models of surface geology around the world. Their work is being applied in oil exploration and education (for virtual field trips).

Meanwhile, fellow researcher John Ferguson is applying a technique called 4D microgravity – essentially ultraprecise gravitational measurements, a few parts per billion of the Earth’s gravitational field – to monitor the success (or otherwise) of CO2 sequestration in underground reservoirs.

Another important strand of the UT Dallas geosciences programme is the use of remote sensing (specifically, space geodetic satellite observation) to understand changes in Earth systems over time. “There’s much more to it [remote sensing] than pretty pictures,” explains Alexander Braun.

“You can actually measure real physical parameters – such as the [Earth’s] gravity field or magnetic field – and, more importantly, you can detect surface deformation. The Earth is a very active planet and it is crucial for us to understand when and where it is moving.”

In the second video (below), senior scientists in the UT Dallas geosciences programme explain what attracted them to a career in the Earth sciences. It seems if you like to travel and have a hankering for the outdoors then Earth sciences could be just the ticket.

Or, as Bob Stern puts it, “It’s really a remarkable opportunity to get out and see things that no-one else gets to see – that you would never see as a tourist.”

Posted in General | Tagged , | Comments Off on Earth sciences: unlocking the secrets of a dynamic planet | Permalink
View all posts by this author  | View this author's profile