This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

Free weekly newswire

Sign up to receive all our latest news direct to your inbox.

Physics on film

100 Second Science Your scientific questions answered simply by specialists in less than 100 seconds.

Watch now

Bright Recruits

At all stages of your career – whether you're an undergraduate, graduate, researcher or industry professional – can help find the job for you.

Find your perfect job

Physics connect

Are you looking for a supplier? Physics Connect lists thousands of scientific companies, businesses, non-profit organizations, institutions and experts worldwide.

Start your search today

Tag archives: astrobiology

Radiation blasts render Earth’s twin inhospitable to life

Illustration showing Kepler 438b being irridiated by its host star

Radioactive? Kepler-438b is regularly irradiated by huge flares of radiation from its host star. (Courtesy: Mark A Garlick/University of Warwick)

By Tushna Commissariat

In the past decade or two, exoplanetary research has been booming as NASA’s Kepler telescope and its cohorts have found nearly 2000 exoplanets and 5000 promising candidates. Unsurprisingly, we have been searching long and hard for those planets that could be habitable or are as similar in shape, size and proximity to the host star as the Earth is to the Sun. Indeed, in January this year Kepler scientists announced that they had found the most Earth-like planet to date – Kepler-438b – orbiting within the habitable zone of its host star, the red dwarf Kepler-438, which lies about 470 light-years from Earth.

The planet, which is slightly bigger than our own, was found to be rocky, and, thanks to its location, rather temperate, meaning that it could have flowing water on it – two key factors that astronomers look for when accessing a planet’s habitability. Unfortunately, David Armstrong of the University of Warwick in the UK and colleagues have now found that Earth’s twin is regularly bathed in vast quantities of radiation from its star – a real dampener when it comes to the formation of life as we known it.


Posted in General | Tagged , , , | 1 Comment | Permalink
View all posts by this author  | View this author's profile

Going underground to discuss alien life


By James Dacey

“Genuinely, it could be our generation that first finds life on another planet,” declared astrobiologist Lewis Dartnell last Thursday during a public talk in London. Dartnell was speaking about the possibility of life beyond Earth and what those organisms might be, based on our understanding of life here on Earth. The choice of venue ­– a pedestrian tunnel near King’s Cross Station bathed in neon lights – brought an appropriate alien vibe to the evening. Part of the reason for choosing the site is because if humans were to one day colonize Mars we would need to spend the first few years living underground to avoid the lethal radiation.


Posted in General | Tagged , , , , , | 2 Comments | Permalink
View all posts by this author  | View this author's profile

The search for alien life gathers pace

Alien hunters: Yuri Milner (left) and the great and the good of astronomy announce the Breakthrough Initiatives (Courtesy: Breakthrough Initiatives)

Alien hunters: Yuri Milner (left) and friends announce the Breakthrough Initiatives. (Courtesy: Breakthrough Initiatives)


By Hamish Johnston

Earlier this week in London the billionaire physics enthusiast Yuri Milner joined forces with some of the biggest names in astronomy and astrophysics to announce a $100m initiative to search for signs of intelligent life on planets other than Earth. The money will be used to buy time on a number of telescopes to search for radio and optical signals created by alien civilizations.


Posted in General | Tagged | 4 Comments | Permalink
View all posts by this author  | View this author's profile

Working at the interface of physics and biology

Face to face at the interface between physics and biology

Face to face at the interface between physics and biology.

By Michael Bishop

In the 60 years since James Watson and Francis Crick brought physics and biology together to unveil the molecular structure of DNA, the boundary between the two disciplines has continued to become increasingly blurred.

In this post-genomic era, ever more principles from physics have been applied to living systems in an attempt to understand complexity at all levels.

Yet cultural differences still exist between physicists and biologists, as is made clear in a set of excellent perspectives in the journal Physical Biology, published by IOP Publishing, which also publishes Physics World.

In “Perspectives on working at the physics–biology interface”, a group of eminent scientists give their accounts of working at the interface of physics and biology, describing the opportunities that have presented themselves and outlining some of the problems that they continue to face when working across two fields with quite different traditions.


Posted in General | Tagged , , , | 5 Comments | Permalink
View all posts by this author  | View this author's profile

Earth’s cousin, alien intelligence, Galileo’s game and more

Illustration of Kepler-186f

Artist’s illustration of Kepler-186f. (Courtesy: NASA/SETI Institute/JPL-Caltech)

By Tushna Commissariat

Early last week, astronomers announced that they had found the first Earth-sized exoplanet that is comfortably within the habitable zone of its parent star, using NASA’s Kepler telescope. The new planet, dubbed Kepler-186f, is a close cousin of the Earth as it has a radius that is only 10% larger than that of the Earth, meaning that it could have liquid water on its surface, allowing for the tantalizing possibility of some form of life to exist upon it. At last count, Kepler has now discovered and confirmed 1706 exoplanets.

So it was rather interesting to come across two stories that looked at the implications of life beyond our planetary neighbourhood. Paul Gilster, who writes the Centauri Dreams blog had a rather interesting post on how artists and illustrators need to work with scientists to depict each new exoplanet, to make the images look visually stunning, while still being scientifically accurate. Gilster also talks specifically about the image (see above) that illustrates the newly found Kepler-186f.


Posted in The Red Folder | Tagged , , , , , | 4 Comments | Permalink
View all posts by this author  | View this author's profile

Life on Mars?

Rock on the surface of Mars

Magic mushroom? (Courtesy: NASA)

By Michael Banks

You may remember the story of Walter Wagner, the Hawaii resident who set his sights on stopping CERN’s Large Hadron Collider (LHC).

Wagner, together with his colleague Luis Sancho, filed a federal lawsuit in the US District Court in Honolulu in 2008 to prevent the LHC from starting up. In the lawsuit, Wagner and Sancho claimed that if the LHC were switched on, then the Earth would eventually fall into a growing micro black hole, thus converting our planet into a medium-sized black hole, around which the Moon, artificial satellites and the International Space Station would orbit.


Posted in General | Tagged , , , | 3 Comments | Permalink
View all posts by this author  | View this author's profile

Safe graphene, Martian mollycoddling, mathematical tales and more


The “Telescope names” comic from xkcd. (Randall Munroe/Creative Commons)

By Tushna Commissariat

Just when we thought that it couldn’t possibly have any more practical applications, everybody’s favourite “wonder material” graphene is going to be used to develop “stronger, safer, and more desirable condoms”. Thanks to a Grand Challenges Explorations grant of £62,123 from the Bill and Melinda Gates Foundation, scientists at the University of Manchester will use graphene to develop new “composite nanomaterials for next-generation condoms, containing graphene”. Unsurprisingly, the story made all the national newspapers with the BBC, the Guardian, the Telegraph and the Independent all having their say. The Guardian also noted that industrial graphene-producer Applied Graphene Materialsshares jumped by 40% during its stock-market debut, the day before the above story broke. You can read more about graphene’s many potential applications on page 50 of Physics World’s anniversary issue, a free PDF download of which is available here.


Posted in The Red Folder | Tagged , , , , , , , , , | Leave a comment | Permalink
View all posts by this author  | View this author's profile

Extending the ‘Goldilocks’ zone

Image comparing the inner planets of our Solar System to Kepler-62, a five-planet system about 1,200 light-years from Earth.

A comparison of the inner planets of our solar system, within the habitable zone, to Kepler-62 – a five-planet system about 1200 light-years from Earth. (Courtesy: NASA/Ames/JPL-Caltech)

By Ian Randall

In the modish hunt for exoplanets, the holy grail is discovering such a body within the habitable zone of a star – offering a tantalizing potential for extraterrestrial life. If our solar system is anything to go by, we can expect most planets to form outside of the confines of this zone. What if, however, the habitable zone is really larger than we thought?

This is the idea put forward by Sean McMahon from the University of Aberdeen, Scotland, and colleagues in a recent paper – proposing that the existing definition of the habitable zone overlooks the potential for life to survive below the surface of terrestrial planets that currently lie outside the zone’s reach.


Posted in General | Tagged , , , , | 4 Comments | Permalink
View all posts by this author  | View this author's profile

The strange story of fossils in a Sri Lankan meteorite

By Hamish Johnston

Finding the fossilized remains of extraterrestrial life in a meteorite would surely be the biggest scientific discovery of the century. That’s what appears to be reported in a paper published in the Journal of Cosmology and available on the arXiv preprint server.


Posted in General | Tagged | 5 Comments | Permalink
View all posts by this author  | View this author's profile

Plants like we have never seen them before

100 supercon.jpg
Gliese 667 is one of two multiple star systems known to host planets below 10 Earth masses. (Courtesy: ESO/L Calçada)

By Tushna Commissariat

If you have thought about planets with two or more suns ever since you saw the dual suns of Tatooine in the first Star Wars film, looks like you are on the same wavelength as some astrobiologists. Jack O’Malley-James, a PhD student at the University of St Andrews, Scotland, has been studying what kind of habitats would exist on Earth-like planets orbiting binary or multiple star systems. He shared his results with peers at the RAS National Astronomy Meeting in Llandudno, Wales on Tuesday 19th April.

O’Malley-James and his team have been running simulations for planets that would orbit multiple star systems and trying to understand the kind of vegetation that might flourish there, depending on the type of stars in the system. Energy via photosynthesis is the foundation for majority of life on Earth, and so it is natural to look for the possibility of photosynthetic processes occurring elsewhere.

With different types of stars occurring in the same system, there would be different spectral sources of light shining on the same planet. Because of this plants may evolve that photosynthesize all types of light, or different plants may choose specific spectral types. The latter would seem more plausible for plants exposed to one particular star for long periods, say the researchers.

Their simulations suggest that planets in multi-star systems may host exotic forms of the plants we see on Earth. “Plants with dim red dwarf suns for example, may appear black to our eyes, absorbing across the entire visible wavelength range in order to use as much of the available light as possible,” says O’Malley-James. He also believes the plants may be able to use infrared or ultraviolet radiation to drive photosynthesis.

The team simulated combinations of G-type stars (yellow stars like our Sun) and M-type stars (red-dwarf stars), with a planet identical to Earth, in a stable orbit around the system, within its habitable “Goldilocks zone”. This was because Sun-like stars are known to host exoplanets and red dwarfs are the most common type of star in our galaxy, often found in multi-star systems, and are old and stable enough for life to have evolved.

While the binary systems were not exact copies of any particular observed systems, plenty of M-G star binary systems exist within our own galaxy. O’Malley-James calculated the maximum amount of light per unit area- referred to as the “peak photon flux density” from each of the stars as seen on the planets for each set of simulations. This was compared to the peak photon flux density on Earth to determine whether Earth-like photosynthesis would occur.

Factors like star separation were taken into consideration, to give the best possible scenario for photosynthesis. “We kept the stars as close to the planet as we could, so that there would be a useful photon flux from each one [star] on the planet’s surface while still maintaining a stable planetary orbit and a habitable surface temperature,” says O’Malley James.

Posted in General | Tagged , , , , , | 1 Comment | Permalink
View all posts by this author  | View this author's profile